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Abstract

Bioinformatics is a fast moving �eld which is yielding rich data and interesting �ndings.

These interesting �ndings need to be expressed in a reproducible fashion. Reusability is

a point of major importance in scienti�c research. New areas of research have evolved

which make speci�c and intensive use of computational techniques. To stay true to the

characteristic of reusability, scienti�c publications need to provide su�cient supplementary

data and code. Existing formal data de�nitions are not universal standards. Although

it is commonplace to make supplementary data available, the document formats used are

often not geared toward reusability. A particularly di�cult format to reuse is the Portable

Document Format (PDF) as it was never designed for this purpose.

A proof of concept system for the automatic extraction of bioinformatics focused tabular

data from spreadsheets and PDF documents is designed and implemented. Image analysis

and heuristic techniques are used to determine the table dimensions of tables found in

PDFs. Optical character recognition (OCR) is considered as a novel approach as it sidesteps

the inner workings of the PDF. OCR is thus used to extract the information from PDF

documents and is shown to be a less suitable yet viable method for extracting tabular

supplementary data. Improvements of the techniques involved and possible changes to

algorithms are suggested.



ACM Computing Classi�cation System Classi�cation

Thesis classi�cation under the ACM Computing Classi�cation System (1998 version, valid

through 2013) :

I.4.0 [General]: Image processing software

I.7.5 [Document Capture]: Optical character recognition (OCR)

General-Terms: Supplementary data extraction
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Chapter 1

Introduction

1.1 Problem statement

Fundamental characteristics of research are reusability and repeatability. These principles

should ensure scope for published research to be improved and distilled, expanded upon, or

debunked. Conformation to the ideals of reusability and repetition has become di�cult in

research areas involving high levels of computation (such as bioinformatics). The current

paradigm for scienti�c publications has evolved much slower than the relevance of computa-

tion in research. There often exists a gap between what is published and what is necessary to

repeat the experiments and computation involved. E�ective means for publishing relevant

supplementary data and code do exist but are rarely used. Scienti�c journals do not have

strict requirements for publishing supplementary data take the formats of this data. Instead,

most published supplementary data takes the form of documents not intended for this pur-

pose. Bioinformatics is a data intensive �eld which results in many scienti�c publications

being accompanied by supplementary data which is less than suitable for reuse.

Manually �nding and extracting information from supplementary data is a process found

to be needing automation. Manual extraction of tabular data (which is how most useful

supplementary data is assumed to be published in bioinformatics publications) from Portable
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Document Format (PDF) Documents is haphazard and unreliable. Other formats, such as

spreadsheets or databases, provide easier reuse of supplementary data. Developing and

exploring a fresh approach to reusing published scienti�c data is needed up until a paradigm

shift in publishing supersedes this need.

1.2 Research goals

The problem is approached from an explorative, proof of concept perspective. There exists

current research in extracting content from various �le formats but none of these is focused

on tabular supplementary data. When considering PDFs, existing extraction techniques

rely on the back-end code and representation of the �le to extract information. Owing to

its pedagogical signi�cance, OCR will be used to extract information.

The use of OCR presents challenges in accuracy. It is our goal to determine how to

address these challenges and whether using OCR is a viable alternative to conventional

information extraction techniques. Images require considerably more memory to store and

work with � the nuances of working with images will be explored.

A web scraping component will be developed to determine the viability of automati-

cally obtaining supplementary data. Our goal is to explore a web scraping framework and

determine the viability of future development.

A tracking component will be developed. Keeping track of the state of the system and the

parameters involved, is important in order to avoid unnecessary repetition of time consuming

stages in the system pipeline when parameters need changing. System parameters and state

information will be tracked. It is our goal to show this tracking is relevant and can be used

to shortcut the pipeline process.

A heuristic table dimension �nding algorithm will be developed. Along with exploring

the e�ectiveness of dividing tabular data using this algorithm, �nding possible extensions,

improvements, and alterations to this algorithm are our goals.
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Peripheral additions and utility functionality will be developed to determine the viability

of automating the process of information extraction. Full automation is an unrealistic goal;

user intervention must be considered and a simple user interface will be developed to provide

scope for it. We will use bioinformatics supplementary data to show the relevance of this

system, of which a �nal output goal will be a BED �le which can be used by bioinformatics

tool chains.

1.3 Thesis overview

This thesis begins with a literature survey in Chapter 2. An overview of what bioinfor-

matics is and how it is relevant to a computer scientist is presented. The MEME suite is

outlined with speci�c attention given to the �ow of data and input formats. The history and

structure of the Portable Document Format follows. Optical character recognition (OCR)

is explained and current open source OCR engines are discussed. Relevant research in in-

formation extraction and reproducible research (with particular focus on PDF documents)

are reviewed.

Chapter 3 is a presentation of the design of a proof of concept system. The system is

segmented into its constituent parts and described part by part. There is a focus on the PDF

information component as it presents the highest level of complexity. Chapter 4 outlines

the implementation of the system. Algorithms for cell division and fuzzy matching output

tables are described. The implementation of the user interface and a reusability component

are described. Future implementation options are also given.

The result summary and discussion of results constitute Chapter 5. Relevant components

of the system are tested. Various accuracy and e�ciency tests are carried out and discussed

(particularly concerning the contributing components to PDF information extraction).

Conclusions and future work follows in Chapter 6.
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Chapter 2

Literature Survey

In this chapter context will be given as to what biology is and what it means to a computer

scientist. The emergence and signi�cance of bioinformatics will then be discussed. Many

researchers involved in bioinformatics have a strong biology background and thus lack the

skill to do what computer scientists should be able to do (with varying e�ort) in order

to extract data from supplements. With regard to sequences and genomic coordinates,

an outline of common input formats for bioinformatics tools exempli�es the existing gap

between what is published (since there are no real standards) and what is required by said

tools. A brief summary of some of these tools and what they require as input is given to

show the necessity of bridging this gap (a gap that limits the fundamental characteristic of

scienti�c publication: reusability). The importance of reusability and repetition in scienti�c

publications is discussed along with proposed solutions (such as the Galaxy web service's

approach to solving this issue).

Current means of publishing and current supplementary data publishing norms are not

geared toward reusability. Instead, common documents such as spreadsheets and PDFs

are used to publish supplementary data. The PDF is explained and shown to be a docu-

ment format designed for universally readability, not reusability. Some current information

extraction techniques are reviewed. Considering our novel approach to PDF information ex-

4



traction consisting of image processing and OCR, current OCR techniques and open source

OCR engines will be explored.

2.1 What is Biology to a Computer Scientist?

DNA (deoxyribonucleic acid) is a molecule consisting of a combination of paired bases

bonded to a sugar phosphate.

There are four possible bases, namely:

• Adenine (A)

• Theymine (T)

• Cytosine (C)

• Guanine (G)

Most DNA is found in the nucleus of the cell. However, there is a small portion residing in

the mitochondrial DNA. This mitochondrial DNA is found within the mitochondria of cells.

Mitochondria are involved in energy production of cells (Mandal, 2013).

Approximately 99% of DNA is identical between two human beings. The remaining 1%

of dissimilar DNA is what is used in paternity tests and the like (Benoît, 2005).

It is DNA that is the determining factor of heredity and consequently how an organism

self-replicates in the monumental fashion resulting in the �ow and balance of life. Most of

DNA processing has been concerned with DNA in terms of protein construction. This is the

main coding function of DNA, as understood presently. It cannot decisively be said this is

the only function.

DNA consists of two anti-parellel strands comprising the four bases. These strands are

bonded to alternating sugars and run in opposite directions. It is possible to determine one
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strand's composition by performing a reverse complement on the opposite strand. Perform-

ing a reverse complement involves reversing a given DNA sequence and then swapping bases

T and A and bases C and G.

Another concept worth understanding is that of the transcription factor. A transcrip-

tion factor is a protein acting on DNA to in�uence the �ow of genetic information. This

in�uences the production of RNA and therefore the proteins that make up an organism.

A transcription factor binding site (TFBS) is a section of DNA where a transcription

factor binds. Cis-regulatory modules are sequences of DNA known to include a number of

TFBS's related to gene expression and are particularly relevant owing to their functional

component.

Bayat (2002, p. 1018) de�nes bioinformatics as :

�The application of tools of computation and analysis to the capture and

interpretation of biological data.�

Proteins are comprised of a twenty letter alphabet. Biologists perform a process known

as sequencing to analyse DNA and/or protein to determine the order of bases or amino

acids. This sequence is linear and (since the representation is simply using an alphabet of

letters) results in a large string. This is the point at which computer science becomes useful.

The problem at hand is essentially one of string searching, known more speci�cally as the

Approximate Common String (ACS) problem. The biological sequences are the strings for

the ACS problem (Bailey, 1995).

Computer scientists are able to develop the tools needed to do the large scale processing

and management of raw data (produced by molecular biologists) into a manageable, useful

and user-friendly form. This hastens the process of understanding in appropriate �elds. Not

only are the techniques and algorithms important aspects of this, but so is the interpretation

of data and the implementation of tools that make this information more available and user-

friendly.
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2.2 Bioinformatics - what is it?

Computer science is a rapidly growing discipline naturally lending itself to avenues of thought

applicable to multiple other disciplines. The fundamental principles of abstraction and

automation associated with computational thinking are inherently powerful devices for the

solving of otherwise overwhelmingly complex problems. Problems involving massive data

sets, pattern matching, large statistical analysis and multi-database lookups can be managed

e�ectively and e�ciently using tools developed within the realm of computer science. A solid

core understanding of manipulating data and the processes and algorithms involved (in both

the abstracted, higher level and the lower level) are crucial in elegantly using a computer to

solve this sort of problem.

The style of problem able to be solved thanks to computer science suits the style of prob-

lem present in many other sciences. Molecular biology is an example of a science marrying

very well with computer science. Molecular biology concerns itself with the structure, char-

acteristics and chemical processes involved in living cells. These chemical processes result in

the formation and self-creation of an organism on a higher level (considering the �one-way

street� �ow widely believed to be followed in molecular construction; genes are transcribed

into RNA and RNA is translated into DNA). The discovery of DNA by James Watson and

Francis Crick published in a scienti�c paper in 1953 resulted in a new area of research with

absolutely profound implications (Crick & Watson, 1954).

The key to the link between Biology and Computer Science is the digital nature of the

DNA molecule. These building blocks of life are the alphabet living organisms use to self-

create. The presence of this, along with the precise mapping between the amino acid building

blocks of protein, means computer science, in theory (considering the noise present through

the biochemical processes involved), possesses the tools and consequently the potential for

tools to store, analyze and process DNA.

The emergence of informational biology and bioinformatics follows naturally as a result

of the tools, techniques and processing ability needed from computer science in this quickly
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developing area of research. The Human Genome Project was completed in 2003 and became

a major contributor to the swift advance of bioinformatics (in terms of popularity and tools).

The goals of the Human Genome Project included (amongst others) the development and

enhancement of sequencing technology. These can be attributed to sparking much research

into novel, state-of-the-art techniques involved in bioinformatics.

Bioinformatics is a rapidly advancing area of research and requires the combined e�ort

of members of di�erent schools of study in order not only to gather and process the vast

wealth of information constantly collected, but also to do so, in an e�cient manner.

When the question of functionality and use is considered, access to and easy use of

bioinformatics tools are paramount. The MEME (Multiple EM for Motif Elicitation) Suite

(Bailey et al., 2009) tool set for motif discovery and searching is a stand-alone or web

server based tool set designed for use by anybody wishing to do so. The Galaxy project

acknowledges computation as an indispensable tool in life science research and provides an

open platform for accessible and reproducible web-based tools (Goecks et al., 2010). RSAT

(Regulatory Sequence Analysis Tools) is yet another example of a software suite tending the

needs arising in bioinformatics (Thomas-Chollier et al., 2008).

These tools, constantly under scrutiny and consequently being improved, all have their

�aws and space for growth. A common trend in the use of said tools, is the gap of under-

standing between computer scientists (the designers and implementers of these tools) and

biologists (the users). Whether considering the quirks of software use (command line param-

eters, for example) or the need for a speci�c format input (essentially a computer science

`speed bump' to be overcome), there is still much space for improvement. The following

sections will outline some of these tools and the input formats associated with them.
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2.3 Input formats

There are commonly two manners of representing genomic data. The �rst of these to consider

is that of genomic coordinates. These are coordinates referring to speci�c positions in

corresponding sequences (a chromosome in the human genome, for instance). Genomic

coordinates are resolved into sequences and are commonly used because they require much

less information to be stored.

It is important to have knowledge of the correct version of genome (and is presumed

when using coordinates) used in order for these coordinates to resolve into the correct se-

quences. There are two prominent genome browsers currently being used, namely the UCSC

genome browser (Kent et al., 2002) and the ENSEMBL genome browser (Flicek et al., 2013).

Variations of genomes between these browsers is attributed to di�erent choice with regard to

keeping up to date with sequenced DNA; the ENSEMBL browser keeps consistently (with the

warranted trade o� of having occasional mistakes released) up to date versions of genomes

while the UCSC browser waits for full, con�rmed versions of genomes to release. To illus-

trate this, we compared the Mitochondrial chromosome published by each of these genome

browsers (Figure 2.1). These two sequences were 99.7% similar. This may seem adequately

similar but this dissimilarity can yield very di�erent results in some experiments.

CATAAAAACCCAATCCACATCAAA - ACCCCCTCCCCATGCTTACAAG

CATAAAAACCCAACCCACATCAAACCCCCCCCCCCCATGCTTACAAG

�����������������������������������

TACAGCAATCAACCCTCAACTATCACACAAGCCATTTACCGTACATA

TACAGCAATCAACCTTCAACTATCACACAAGTCATTTACCGTACATA

�����������������������������������

ATTACAGTCAAATCCCTTCTCGTCCCCATGGATGACCCCCCTCAGAT

ATTACAGTCAAATCCCTTCTCGTCCCCATGGATGACCCCCCTCAGAT

Figure 2.1: Comparison of a section of the Mitochondrial chromosome from the UCSC
browser (top track) and the ENSEMBLE browser (bottom track). Di�erences are empha-
sised in bold italic.
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Another complication inherent in using coordinates is that of coordinate o�sets. Genome

coordinates can either be zero- or one- based. The di�erence is best explained by example:

if the start coordinate is zero and the end coordinate is 100, the span of bases is 0-99 for

zero-based systems and 1-99 for one-based systems. There is no standard to how this is

done. Both the ENSEMBLE and UCSC genome browsers consider the input coordinates to

be one-based but researchers may choose which style to publish their coordinate data.

2.3.1 BED

The BED �le format is a format for publishing genomic coordinates and is zero-based. There

are three compulsory �elds in BED �les: the chromosome name, the sequence start position

and the sequence end position (Figure 2.2).

chr7 127471196 127472363
chr7 127472363 127473530
chr7 127473530 127474697
chr7 127474697 127475864
chr7 127475864 127477031
chr7 127477031 127478198
chr7 127478198 127479365
chr7 127479365 127480532
chr7 127480532 127481699

Figure 2.2: An example of a simple BED �le.

BEDTools

BEDTools is a set of tools for fast and �exible genomic analysis. It consists of many com-

ponent modules which are runnable as command line tools in a UNIX environment. Of

particular interest to us is the tool called fastaFromBed. fastFromBed is able to extract

FASTA sequences with inputs of BED �le coordinates and a FASTA �le (typically a large

genome �le).
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2.3.2 FASTA format

As apposed to coordinates, the other manner of representing genomic data is that of sequence

data. Although many formats for representing this sequence data are available for use with

bioinformatics tools, the FASTA format has become the popular de facto standard. As

mentioned, other formats exist and if a speci�c tool does not accept a format, tools exist

for format conversion1.

The FASTA format was �rst developed for a software package called FASTP (Lipman

& Pearson, 1985) and its name has no real signi�cance. The format starts with a header

line. The header line starts with a `>' character followed by a unique name (truncated

to twenty four characters, if necessary) without spaces. An optional comment/description

can be given after a space. This line is then followed by one or more sequence lines (each

recommended to be under eighty characters in length). Spaces, blanks, and case are ignored

in the sequence lines (Figure 2.3). The accepted alphabets are dependent on which type of

analysis is being performed (DNA or protein, for example).

>crab_bovin ALPHA
ACTGGGGTCGGCTAGGCTCGAGATATATATTTCGCGATCTCT
CTATAGGGGCTCTAGAGCTCTCGAGAGAGAGAGCTCTCGAG
>crab_anapl BETA
ATTTGCTGATATAGCTCGCTCGATCGCTATATAGGCTCTAGA

Figure 2.3: Examples of the FASTA format (MEME, n.d.).

There is no formal speci�cation of how research data should be published, and speci�cally

how it should be published in the �eld of bioinformatics (where research input data is

plentiful). If authors choose to publish supplementary data, for example, they may choose

to store the sequence data or, more commonly, the genomic coordinates in Microsoft Excel

or Word documents, PDFs, plain text or TSV �les. Each of these has various levels of

di�culty associated with the extraction of useful, reliable data.
1http://genome.nci.nih.gov/tools/reformat.html
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Figure 2.4: Genomic coordinates in a excel spreadsheet (above) and a PDF (be-
low)(Ramagopalan et al., 2010).

A non-standard means of storing data becomes, in itself, an unintentional obfuscation of

this data. See Figure 2.4 and consider the complications of reusing the data published PDF

and Microsoft Excel formats compared to that of data published in a standardised format

(such as the BED �le format). The purpose of extracting this data is for preparation and

use within a toolset (such as the MEME Suite).
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2.4 The MEME Suite

2.4.1 What is the MEME Suite?

Figure 2.5: A visually descriptive representation of the MEME Suite outlining the use and work�ow of

the tools involved (Bailey et al., 2009).

The work by Bailey et al. (2009) on the MEME Suite is a collaborated collection of tools

for discovering, analyzing, comparing and characterizing sequence motifs in DNA or protein

sequences. A motif is a statistically signi�cant recurring pattern within the sequence data

and is functionally signi�cant in molecular evolution. This suite of tools can be installed

locally or on a web server. The �agship tool in the meme suite is MEME. MEME discovers

gapless sequence motifs by searching for statistically relevant motifs (see description below)

within the supplied unaligned sequences. Other tools in the suite for motif discovery are

DREME and Glam2. A motif (see Figure 2.6) is a letter probability matrix for representing

statistical probabilities of bases arranged in a certain manner relative to each other.
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Figure 2.6: A visual representation of a motif called a sequence logo. The height of the letter indicates its

probability of occurence and is scaled for information content. (Bailey et al., 2009).

Tools in the MEME Suite for use in motif search are FIMO, Glam2Scan, MAST, and

MCAST. These (along with other, additional tools) will be discussed. Figure 2.5 shows

a work�ow diagram from the MEME web site depicting how these interrelated tools work

together to provide useful information to the user.

2.4.2 MEME

MEME searches for statistically signi�cant motifs in unaligned and related input sequences.

It is one of the most widely used bioinformatics tools. The discovery of novel signals within

these sequences has many uses in the academic and medical worlds - �nding numerous similar

motifs in multiple sequences is a good indication these sequences share some biological

function (Bailey & Elkan, 1994). The discovery of transcription factor binding sites is but

one of many uses for this tool (Bailey et al., 2006). The MEME Suite (running, for example,

at meme.nbcr.net/meme/) tries to make things simpler for a user by employing a `point

and click' user interface � this still does not bridge the gap of �nding and reusing data from

publications.
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2.4.3 MEME input

The data submission form for MEME is shown in Figure 2.7. Along with an email address

and the �le containing the input sequences, command line parameters for the MEME al-

gorithm can be set here. This speci�c tool does not require the input to be in the FASTA

format (with other formats dying out), although later tools do. Although multiple formats

are accepted as input, none of these formats are coordinate formats. Most research data is

published as coordinates for the sake of space.

Figure 2.7: An example MEME submission form (Bailey et al., 2009).
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2.4.4 Other tools in the MEME Suite

2.4.4.1 MAST

MAST (Motif Alignment and Search Tool) takes as input motif(s) represented as position-

dependent scoring matrices along with a speci�ed database or databases for comparison.

These input motifs can originate from databases or directly from the user but more use-

fully can be direct output from MEME. Input must be ungapped (suitable for output from

MEME). The MAST algorithm takes each input motif and �nds the best matching position

in the sequence and calculates p-value statistics based on the length of the sequence(Bailey

& Gribskov, 1998).

2.4.4.2 FIMO

FIMO (Find Individual Motif Occurrences) is another tool for scanning sequences for the

occurrence of one or more motifs. FIMO can scan DNA or protein sequence databases.

Although it is not the �rst of its kind, it outdoes similar tools in many respects. For

example, RSAT (Thomas-Chollier et al., 2008) fails with regard to scanning proteins.

Input into FIMO consists of one or more motifs (thus seamlessly integrating with MEME)

and either user-supplied sequences or a database to search. FIMO proceeds to search for

statistically signi�cant occurrences of each motif. It does this by scoring each position in the

searched sequence with a log-likelihood ratio. It also makes use of dynamic false discovery

rates. Output from FIMO consists of statistically ranked motif occurrences (Grant et al.,

2011).

2.4.4.3 DREME

A problem facing most motif discovery tools is the di�culty of searching large datasets.

DREME is a novel motif search tool tailored for ChIP-seq data (chromatin immunoprecip-
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itation followed by high throughput sequencing) experiments as these yield an extremely

large number of predictions for TFBS's. What makes the DREME algorithm unique is

its linear scalability with regard to large datasets (large sets of short sequences), allowing

DREME to discover primary and cofactor (`helper') motifs otherwise overlooked by other

tools (which selectively only use some of the data yielded by ChIP-seq experiments).

DREME is limited to �nding motifs of length up to eight base pairs wide. This means

it may miss information rich wider motifs. Although this is a downfall, the motivation for

this choice is rooted in DREME not being a replacement tool for motif discovery but rather

a complimentary tool. It is able to discover quickly overlooked motifs.

DREME takes as its input two sets of sequences (a positive and negative set - if no nega-

tive set is given the positive set is shu�ed to provide this contrasting set) and a signi�cance

threshold which is used in the algorithm. Output consists of the discovered motifs, their

logos, their reverse compliment logos, statistical signi�cance data (allowing for biologists to

distinguish between statistical artefacts and actual functional motifs), an option to down-

load, and an option to submit the output for further analysis (Bailey, 2011; Machanick &

Bailey, 2011) .

2.4.5 Installation and use procedure

The MEME Suite is a collection of command line tools with the option of a web service.

Any user is able to install this web service. Anybody with some knowledge of programming

can use the MEME tools in a pipeline fashion. Galaxy (discussed in Section 2.5.1) uses a

visual work�ow environment to allow for web service users to do this in a high level manner

and would be a suitable direction for the MEME Suite to head in in order to achieve better

usability. A number of complications relating to the tying together of the MEME tools arise

at this point. A number of command line parameters must be provided for the tools to

function optimally (see below for an example thereof).

meme crp0.s -dna -mod zoops -nmotifs 3 -revcomp
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The web service has an overlaying interface for this (see Figure 2.7) but for complete �exibil-

ity of use a version must be installed locally. The MEME Suite has extensive documentation

regarding this procedure (found at http://meme.nbcr.net/meme/doc/meme-install.html)

with options for parellel installs, customized installations, and the installation of the web

server.

2.5 Additional tools

There exist many additional tools for sequence analysis in the MEME Suite. These range

from uses for visualisation to analysis of gapped motifs (and their visualisation) to motif

enrichment analysis (SpaMo and CentriMo).

The improvement of tools for use in bioinformatics is a pedagogical venture. The open

source nature of most tools show the intent of those who make use of them. This is an

environment for research and advance in technology for good. A in depth look at other

tools and web services is warranted in this scope � their novel approaches, advantages and

downfalls shall be considered.

2.5.1 Galaxy

Galaxy takes a di�erent approach to bridging the gap between computer scientists and bi-

ologists. Galaxy places focus on accessibility, reproducibility and (the often underestimated

element of) transparency in the context of software development. Many genomic experi-

ments face the issue of reproducibility. Experimental reproducibility is essential for valid

scienti�c research. The complex nature of experiments (with many involved steps, detailed

and speci�c parameters and chaining of computational tools) makes them di�cult to repro-

duce without a framework for doing this. Galaxy proposes a Reproducible Research System

in which input, output and representation need to be de�ned but provide promise for easier

and more widespread use of the accessible bioinformatics tools.
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Galaxy is a open web based platform for use by those without any, or with little, pro-

gramming skill (most biologists, for example). This platform provides a mechanism for

command line parameter input, tool chaining and visualisation. Galaxy also allows for the

installation of other tools. These are required to run on a command line yet have wrappers

for graphical interfaces. Developers specify documentation on input and output parameters

with galaxy creating a workbench environment for their use. This trades �exibility for user

friendliness.

User friendliness is not the crux of the Galaxy's implementation. Analysis and methods

involved are arguably of more importance than simple output �gures. Galaxy provides

means of output designed for detailed, multi-layered analysis of experiments performed.

This output takes the form of Galaxy pages with dynamic work�ows and history analysis.

See Figure 2.8 for an example of these.

Galaxy makes use of metadata capture on datasets, tools and parameters in an automatic

fashion. Reproducibility is also an issue for graphical interfaces, which is why galaxy records

the steps a user takes. User descriptions of steps in the history of the experimentation provide

a means to annotate and give reasoning for method and parameter choice (amongst other

things).

The work�ow editor within Galaxy provides a dynamic means of chaining tools and

keeping track of this for later use and reproduction.

Galaxy tools can be split into three categories: query operations on datasets, sequence

analysis tools, and output display tools. The core of Galaxy does the job of binding all

of these in the attempt to ful�l the goals of accessibility, reproducibility and transparency.

With approximately �ve thousand jobs processed daily, Galaxy is a powerful and useful

service (Goecks et al., 2010).

Galaxy partially addresses the issue of reusability by allowing storage of genomic coor-

dinates and work�ows, but does not provide means of extracting data from supplements.
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Figure 2.8: A Galaxy page example. Top right shows input taxonomy data. Middle right shows a history

panel. Bottom right shows a work�ow (Goecks et al., 2010).

2.5.2 RSAT

Regulatory Sequence Analysis Tools (RSAT) is a cluster of sequence discovery and search

tools aimed at cis-regulatory modules of DNA. Cis-regulatory modules are sequences of

DNA known to include a number of TFBS's related to gene expression and are particularly

relevant owing to their functional component.

RSAT has a series of tools for both pattern discovery and matching. An earlier edition

only had the ability to do string matching but the current edition now uses position-speci�c

scoring matrices (similar to MEME) along with a background model for genomic noise. This

background model is very important for the correct functioning of the algorithm. RSAT

supports over 600 genomes and has pre-computed background models for these.
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Without a good background model, much of the RSAT may fail. Making use of these

background models, however, allows for random control tests to assess the presence of false

positives. RSAT also has drawing facilities and a web service implementation.

The web service allows users to submit input and receive output using a tool installed

on the web server but has no interface for chaining tools together. For this, the user needs

to have some basic programming skill. A future e�ort to provide a web interface for tool

chaining is needed. As with most bioinformatics tools (implementing a web service worth

considering) documentation and demos are available for use of the tools in the suite.

Future e�orts to improve RSAT would include increased �exibility with other tools and

databases and a means to rope tools together e�ciently (Thomas-Chollier et al., 2008).

Bioinformatics is a focal point up until here because it is clearly a research area heavily

oriented around data and makes it a rich and useful case study for research data. The tools

outlined thus far, form part of an ever-expanding arsenal to be used for e�ective research.

We often speak of research as an almost �nite entity, not open to change and evolution after

the critical point of `publishing' has been reached. This is truly not the case. In order for

research to be fully valuable it should be made as reproducible as possible.

2.6 Reproducible research

One of the main principles of the scienti�c method is that of reproducibility. Owing to

the fact that research only gains true credibility only in the agreeing hands and minds of

many (who o�er independent veri�cation of observations). No scienti�c process is complete

without peer review. An adequately equipped reader must be able to repeat a published ex-

periment and analysis caeteris paribus. Questionable results should be debugged, debunked

or con�rmed. Interesting �ndings should be available for testing and to be built upon. Since

replication is the puri�er and judgement standard for research, a mind-set of reproducibility

and repetition is paramount to the scienti�c process.
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Scienti�c publications should be geared toward repetition. The realm of computationally

intense research is that of software packages and data. Thoughtful use of modular software

and code yields satisfactory results. This induces a situation whereby the complexity of

repeating complicated pipelines for manipulation and analysis of data makes repetition dif-

�cult.

In recent years, the world has seen the rise of technology on a massive scale. The increase

in availability of technology and, more speci�cally, computational tools are characteristics

of a fresh approach to scienti�c research. Researchers in the �eld of bioinformatics, for ex-

ample, make use of the available tools for analysing large datasets in an automated fashion.

While the technology involved in scienti�c research has taken considerable leaps forward,

the convention for publishing this new, computationally focused research, has not changed

to keep up with this trend. This results in published research detached from its true environ-

ment, its software, and its data. Referring to Claerbout's philosophy, Buckheit & Donoho

(1995, p. 5) state:

�An article about computational science in a scienti�c publication is not the

scholarship itself, it is merely advertising of the scholarship. The actual schol-

arship is the complete software development environment and that complete set

of instructions that generated the �gures.�

Mesirov (2010) proposes a Reproducible Research System (RRS). This system is comprised

of two parts: the Reproducible Research Environment (RRE) and the Reproducible Re-

search Publisher (RRP). The RRE is where computational work happens and should house

the ability to keep track of software and data used and also provide a framework for re-

distribution. The RRP is a document preparation system and should be able to reproduce

readily analysis that extends into the output document itself. The RRP concept is similar

to that of a Microsoft Excel worksheet placed within a Microsoft Word document � change

the worksheet and the document changes too. Robust code versioning is important in order

to allow for computations to stay repeatable.
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A user-friendly RRS was created using GenePattern2 as the RRE and Microsoft Word

as the RRP. The use of a dynamic system such as this, gives researchers the opportunity to

become actively involved in the consumption of research.

Goble et al. (2010) took a di�erent approach to solving this problem. They created

an online bioinformatics work�ow sharing research environment called myExperiment. my-

Experiment is inspired by websites such as Facebook in that it makes use of and depends

upon a social network. Users must register in order to upload work�ow information but can

browse work�ows anonymously. Although � the strength of the social network approach

here is realised post registration. The creators of myExperiment recognise the need for a

RRS and acknowledge the need for a document production component.

Both myExperiment and a RRS give solutions to the problem of research not being

reproducible. What is really needed is the active cooperation of journals. Although it is

common to �nd supplementary data and/or code, there is no �xed format for this and

no requirement of its availability. This makes researchers limited in the way they publish

�ndings and thus limits peers' ability to evaluate these �ndings.

It should be noted, however, that not all research can be repeated. Time and expense

are decisive factors in repeating a study. The Sloan Digital Sky Survey (York et al., 2000)

has been continuing for years and would not be a viable candidate for replication. Research

techniques may be highly specialised or involve highly speci�c technologies � in these cases

reproducibility becomes limited (Peng, 2011).

These outlying cases do not discount the need for reproducibility and, theoretically, ev-

ery computation is accompanied by a log of actions taken by the computer. Either code is

no longer available or natural language does not provide su�cient detail of the computa-

tion. The responsibility of keeping track of computation does not fall into any one party's

hands. Big user interface driven software systems are not geared toward reproducibility and,

since old habits die hard, researchers are reluctant to learn how to use new software systems.
2GenePattern is an open source bioinformatics analysis package.
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This is not to say there is no research motivated software geared toward reproducibility. The

Galaxy web service (Goecks et al., 2010) is designed to make results reproducible through

work�ow visualisation and tracking. Owing to the rise in popularity of free code publish-

ing websites such as Github (github.com) and Sourceforge (sourceforge.net), making code

available has never been easier.

If not for any other reason but for the sake of staying true to the foundational principle

of reproducibility of scienti�c �ndings, there is a clear need for a paradigm shift in the way

researchers (and, more importantly, journals) publish papers in which research is reliant on

computation. This will be a slow shift as it is a shift in thinking away from the comfort of how

things have always been done. Announcing the result to readers is easily achievable using

present conventions, but convincing readers of its correctness requires more than just a paper

advertising �ndings. In the meantime, there is space and scope for e�ective mechanisms for

data extraction for papers published before and outside this paradigm shift (Gentleman,

2004). Supplementary data has no �xed format, although formats such as Microsoft Excel

and PDF are fairly commonplace.

2.7 PDF

The PDF dates back to early 1990 � a time when PostScript was fast becoming the standard

for describing the printed page. PostScript is a programming language for describing a page

to be sent to a printer. A printer, in this case, would house the software and hardware

necessary to convert this code into an image. This is called a Raster Image Processor. In

the days of PostScript, drawing and page layout were only accomplished by manually typing

in code.

The next step in the path toward the PDF is Encapsulated PostScript (EPS) �les. An

EPS is a single �le including the PostScript code and can include a low resolution preview

image of the document. This allowed some programs to o�er a preview of the document

prior to its printing. Another option was to print the PostScript �le to disk and view the
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result. The PDF might seem (and is often considered to be) a replacement for PostScript

and EPS but it is not. Although largely built upon PostScript, PDF is a smart �le format

capable of storing information about the page behaviour and not only its layout. This

includes information such as fonts, images, printing instructions, and so on (Adobe Systems

Incorporated, 2013).

PDF has become the standard for exchanging digital documents on the internet. Some

printers are even designed to convert all �les to PDF before printing. Although a simpli�-

cation, PDF can be thought of as a PostScript �le already interpreted into objects. There

are eight types of objects:

1. Null: has a type and value that will always result in inequality with other objects.

2. Boolean: true or false (can be used in arrays and dictionaries).

3. Numeric Objects: integer and Real numbers. Integer objects are within a certain

range and centred on zero. Real objects are usually represented in �xed-point and

have limited range and precision.

4. String Objects: represented as a series of unsigned integer values.

5. Name Objects: an atomic symbol object; essentially a place holder.

6. Array Objects: a one dimensional sequential arrangement of heterogeneous objects.

7. Dictionary Objects: an associative table of objects. The key must be a Name Object

and the value can be any object.

8. Stream Objects: similar to a String Object but unlimited in size and able to be read

sequentially (where a String Object must be read in its entirety). Stream Objects can

represent large data objects such as images.

Objects in PDFs can be labelled as indirect. An indirect object is assigned a unique object

identi�er so as to allow other objects to refer to them (in a dictionary, for example) (Adobe

Systems Incorporated, 2006).
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These objects are displayable on screen as image and text layers and not in code, thus

making reverse engineering a displayable PDF �le considerably complex. PDFs do not store

metadata for entries within a table. Instead, the position of characters on the page are

stored. Open source tools exist for extracting information from PDFs � we will outline two

of these below.

2.7.1 pyPDF

pyPDF3 is a library built purely in Python and is capable of extracting document informa-

tion, splitting and merging pages in a document, cropping pages, merging multiple pages

into a single page, and encrypting and decrypting PDFs. Since PDF input is as a �le stream,

pyPDFs ability to work with pure StringIO objects allows it to manipulate PDFs in memory.

pyPDF will be used for splitting a PDF into separate pages.

2.7.2 PDFMiner

PDFMiner4 is a data extraction tool, written in Python, designed primarily for extracting

text from PDF documents. It obtains the exact location of text on a document and is not

limited to text alone. It can retrieve font and other document behaviour information. It

also includes a PDF converter and an extendable parser which is ideal for non-text related

parsing. Owing to PDFMiner's ability to extract non-text related objects and reconstruct

original layouts by automatically grouping text chunks, the need for identifying column and

row separating lines (or white space) in a table becomes a possibility (Shinyama, 2011).

The manner in which String Objects are stored within PDFs means that a direct �copy

and paste� methodology can easily result in an incorrectly ordered output (see Figure 2.9

for an example).

3http://pybrary.net/pyPdf/
4http://www.unixuser.org/~euske/python/pdfminer/
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Figure 2.9: An example of a �cut and paste� direct conversion of a PDF to HTML using
PDFMiner. This highlighted sections are html div elements and the arrows represent the
arrangement of these div elements (Shinyama, 2011).

Owing to the sporadic nature of directly extracting data stored in PDFs, optical character

recognition is a possible alternative.

2.8 Optical character recognition

Optical character recognition (OCR) refers to the process of extracting machine readable

characters from input images (usually in the form of scanned documents). OCR can be

used to convert books to digital representations (and making them searchable), convert old

documents to a digital format for storage and for use by the visually impaired. OCR is still

an o�ine process unlike real time character recognition (which takes the stroke direction

and order into account for accuracy) and usually involves multiple passes over a document.

The entire OCR process involves scanning (or other document retrieval), pre-processing,

character recognition, layout analysis, and error correction. Pre-processing can include
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removing noise in an image (for which libraries such as OpenCV5 are suited), converting

image to a binary colour layout (i.e. black and white), word and line detection, character

spacing and segmentation detection, and scaling of characters.

The actual character detection can and is done in many ways. For simplicity, character

recognition is generalised into the techniques of pattern matching and feature matching.

Earlier OCR systems relied heavily on pattern matching. Pattern matching attempts to

match an unknown possible character to some prototype character. The downfall of this

becomes clear when considering various fonts.

When OCR �rst became popular this was not a problem as fonts were normalised specif-

ically for OCR. Since this has not been the ideal reality for some time, smarter character

recognition algorithms for feature detection have become the norm. Not completely dissim-

ilar to pattern recognition, feature recognition recognises the constituent features of a letter

and compares these to known letter features. This is, admittedly, a gross underestimation

of the technique, but more detail will be given on this when detailing current popular open

source OCR systems. Feature matching has the added advantage of weighting invariable

characteristics of letters above variable characteristics (Woodford, 2010).

The complexity in recognising characters using OCR will naturally never be completely

overcome (with poor quality images and natural handwriting taken into consideration). OCR

systems will often employ error correction techniques at multiple stages of recognition. Using

a lexicon for possibly occurring words, is not uncommon. With application speci�c lexicons

and language speci�cation, undetermined or uncertain words and/or characters can often

be resolved with a fair degree of certainty.

Owing to its rise in popularity and use, commercial OCR systems are used extensively.

Open source OCR systems such as Tesseract OCR and OCRopus have also gained momen-

tum and will now be reviewed.
5OpenCV is a popular open source image processing library
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2.8.1 Tesseract

Tesseract was developed as an open source OCR engine by Hewlett Packard between 1984

and 1994. After its release, it was sent to the 1995 University of Nevada Las Vegas OCR

accuracy test in which it showed its mettle when pitted against commercial OCR engines.

Tesseract OCR development then went back under development until 2005, at which time

it was released for open source6.

Owing to the fact that Hewlett Packard owns many products using page layout analysis,

there was no need to develop Tesseract's own page layout analysis component. The process

involved in Tesseract follows a traditional pipeline approach. Firstly, connected components

are analysed to break text into blobs. Blobs are then assigned to words and lines. Text is

then categorised as either �xed pitch or proportional (more on that to follow).

The line �nding algorithm used by Tesseract assumes page layout analysis is complete

with roughly uniform text regions as input. This text is then �ltered to remove punctuation,

diacritical marks, and noise (these are taken into account at a later stage). The algorithm

does not require deskewing of curved text.

Most OCR engines struggle with curved text (such as at the base spine of a scanned

book). Tesseract deals with this by making use of quadratic spline7 which is reasonably

stable but can result in strange discontinuities if multiple spline segments are needed for the

function de�nition (Figure 2.10).

Figure 2.10: Tesseract quadratic spline line �tting. The top line is straight. The other lines
are the �tted lines and are parellel to each other. On careful inspection it can be seen these
lines are curves (Smith, 2007a).

6available at http://code.google.com/p/tesseract-ocr
7A piecewise de�ned smooth function
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Once line �tting is complete, Tesseract proceeds to classify text as either �xed pitch or

proportional. Fixed pitch text is text with a uniform bounding box size for characters and

thus makes character recognition a simpler task. Recognising characters in proportional text

is a complex task involving chopping and association (when �xed pitch text is found, these

steps are skipped). Tesseract circumvents most of these problems by measuring character

spacing in a limited region. Spaces close to a certain threshold are only decided upon after

word recognition.

Word recognition proceeds on �xed pitch text �rst. Proportional text characters may

very well be joined and must be chopped into characters. This is done by approximating a

polygon of the text and identifying concave points as chop point candidates. All possible

chops are stored and executed in priority order. Chops improving con�dence in the OCR

process are kept; chops not improving con�dence are undone and given a lower priority order

(but possibly used again at a later stage). At the point in which chops are exhausted and

con�dence in the word is not high enough, broken characters are associated by combinations

of the chopped up word. As part of this process, Tesseract is constantly using static character

classi�cation and features to classify candidates as characters.

Tesseract assumes features in the unknown need not be exact matches of features in the

known. A many-to-few feature match is accomplished here: the unknown is broken down

into many uniform, unit size three dimensional features; the known prototype characters are

broken down into few three dimensional (i.e. including size) features. The computational

cost of calculating distances from the unknown's features to the prototype's features is high

but does mean broken characters can be accurately matched (Figure 2.11). This ability to

recognise broken characters means that Tesseract required minimal training data as it never

needed to be trained for broken characters.

Tesseract does not make extensive use of linguistic analysis. The linguistic module

chooses the word amongst scoring categories such as top numeric word. The con�dence is

calculated as the negative of the normalised distance from prototype to unknown word. The

classi�cation of words is done using an adaptive multipass classi�er. The adaptive classi�er's
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�rst pass over the text strengthens the adaptive classi�er. The second pass is for correcting

wrongly classi�ed words from the �rst pass. The �nal pass resolves spacing in proportional

text and �nalises the classi�cation (Smith, 2007a).

Figure 2.11: Tesseract character classi�cation on a broken `O'. The character is segmented
into many unit sized features and matched against a prototype with fewer, non unit sized
features (Smith, 2007b).

Tesseract is currently behind commercial OCR engines but has been taken over by Google

with further work aimed at improving character recognition by using techniques now known

to be useful for OCR. A notable feature of Tesseract is its ability to allow de�ned words

� if a certain dictionary of words is expected and so de�ned, accuracy can be dramatically

improved. Owing to the nature of this project, the allowable words can be clearly de�ned.

This makes Tesseract an ideal solution. OCRopus employs additional techniques and is

somewhat of a wrapper around Tesseract.

2.8.2 OCRopus

OCRopus is an open source OCR system designed to overcome limitations in OCR software.

OCRopus focuses on extensibility with a built-in scripting language and shell and is aimed

at the research and commercial communities using an Apache 2 license with few commercial

limitations.

In contrast with Tesseract OCR, OCRopus has its own page layout analysis for dividing
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an input page into text regions and non-text regions. Text line segmentation and deskewing

algorithms are used to prepare the image for OCR.

Once text lines are recognised, they are passed into an OCR engine. Up until recent

versions of OCRopus, Tesseract was the default character recognition plugin. The third,

and arguably most notable component of OCRopus, is its statistical language modelling.

This is done using an open source library called OpenFST (Allauzen et al., 2007; Sproat,

2013). OpenFST is used for creating, manipulating, and searching weighted �nite-state

transducers. A weighted �nite-state transducer is a two tape �nite state automata where

each state has a input and output and an associated weight. This type of automata is able

to accept an input string on its input tape and produce an output string on its output tape.

An advantage of using this is the fact that complex language models can be converted into

weighted �nite-state transducers without the need for language modelling code. It should

also be noted these weighted �nite-state transducers have multiple functions within an OCR

system.

The �nal result of the OCRopus system is HTML like output (called hOCR). This is

aimed at decoupling the output from the system itself. In other words, this output is not

dependent on any speci�c OCR language or script.

OCRopus is currently in its alpha phase and is therefore fairly complex to install and use.

It places emphasis on modularity and reusability in many environments but its complexity

is an unnecessary addition for the task at hand.

Although the most common use for OCR is digitising written or printed text, having

a digital representation of text prior to OCR means noise and inaccuracy issues become

redundant. Performing OCR in this scenario seems counter-intuitive, but when text layout

and ordering are a problems (as with reverse engineering tabular data in PDFs) then using

a di�erent approach as a means of abstraction becomes viable.

It is necessary to build up a toolset for extracting PDF pages as images and for working

with those images themselves. pyPDF (Section 2.7.1) is a useful tool for splitting PDFs
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into pages while ImageMagick8 is used for turning PDF pages into images and OpenCV for

processing these images.

The goal of using these tools and techniques is to extract information from documents

and reusing this information.

2.9 Information extraction

2.9.1 TableSeer

Liu et al. propose the TableSeer system as a solution for searching, crawling for, detecting,

extracting, and ranking tables in scienti�c documents. They argue the point of the lack of

metadata for published tables and how this makes tables particularly di�cult entities for

which to search (even for the likes of public web search engines such as Google). A focus

on extracting tabular data from PDFs (due to its inherent complexity in possible layouts

and constituent elements) is made with reference to easy extendability into formats such as

HTML, Microsoft Word, and the like.

TableSeer consists of a table search engine, a newly de�ned set of metadata to describe

tables, a table detector and extractor (with special focus on a novel `box cutting' algorithm),

and a table ranking algorithm (called TableRank).

The search engine is driven by a web crawler designed to crawl open-access digital sci-

enti�c libraries in search of documents of certain media types.

The next component of TableSeer is its metadata extractor. This accomplishes table

extraction by splitting pages into de�nite boxes and further analysing these boxes. Boxes

are put into three categories: boxes with font smaller than the document de�ned font, boxes

with font size equal to the document de�ned font, and boxes with font larger than the

document de�ned font. Keywords such as `table' and `�gure' are kept as a prede�ned list
8ImageMagick is a useful image conversion tool. A python wrapper called PythonMagick

(pypi.python.org/pypi/PythonMagick) is convenient for use.
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of keywords for box comparison. All boxes with font smaller than the document de�ned

font are analysed for keywords. If a box is found to contain one of these keywords then

it becomes a table candidate and proceeds to be analysed for table white space structure.

Tables are extracted in no more than three passes (with each pass checking a di�erent set

of boxes of the same font size category) of the table detection algorithm. This algorithm

is �awed in that it assumes all tables in a document will be of the same font size and thus

ignores all boxes of a di�erent font size. Once tables are found, metadata must be associated

with them.

The problem of associating meaningful metadata with tabular data is certainly not triv-

ial. TableSeer emphasises the importance of suitable metadata nomenclature for easy search-

ing and recombination. The chosen metadata categories are:

• Table Environment metadata: encapsulating document data (page number, document

title, etc.)

• Frame metadata: does the table/box have a surrounding frame? If so, which sides?

• A�liation metadata: information on the table caption, possible footnote information,

and text involved in referencing the table.

• Layout metadata: number of rows, spacing, header information, etc.

• Cell content metadata

• Cell type metadata

Once tables are identi�ed and metadata is associated TableRank has the task of associating

relevance of these tables to a query. Owing to the fact that scienti�c document related search

engines (like Google Scholar) are simply not geared toward solving this problem, TableSeer

considerably out-performs them at table searching. TableSeer is aimed at �nding documents

by table and not intended as a versatile and robust means of extracting supplementary data

from these tables (Liu et al., 2007). There exist commercial pieces of software for extracting

table information from various documents.
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2.9.2 VeryPDF

VeryPDF (www.verypdf.com) is commercially available software which provides a user with

the ability to de�ne table division lines and extract the information to a Microsoft Excel

or CSV �le. This software proves to be useful and accurate in its table extraction but is

not automated and not freely available (with heavy feature and use limitations in the trial

version). A user is able to create and destroy boundary boxes and vertical lines. Any further

manipulation is completely dependent on the internal algorithms within the system.

2.10 Summary

Bioinformatics is opening many doors into understanding the world around us. Every open

door is accompanied by wells of information. Each attempt to process this information

is accompanied by complications of keeping track of this distilled content in a sustainable

way. A shift of mindset into sustainable and reproducible research methods and styles of

publishing, is ideal for the future of scienti�c publications. In the mean time, however, the

need for working with what we have (primarily a non-uniformly populated set of publications

and data) is a real and pressing issue. To scrape reliably for, extract, reuse, and keep track

of data can aid in steering toward reproducibility.
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Chapter 3

System Design

Facing the problem of reusing supplementary data in the �eld of bioinformatics is not as

trivial a task as it may appear to be. The reasoning behind this becomes clear when

considering the nature of PDF documents. Attention is given to PDF documents owing

to their prevalence and extensive use in the scienti�c community. There have been general

approaches to information extraction from these documents. Broad approaches are unable

to pay due attention to the speci�c details of the task we are attempting to accomplish. For

our purposes, a novel broad spectrum approach to extracting tabular data is designed and

implemented.

The system is composed of a web scraping component to �nd possible valid documents,

a Microsoft Excel spreadsheet data extraction component, a heuristic, OCR-based table

extraction component for PDF documents, a simple user interface, and a parameter and

state tracking component. This chapter will outline the system design on a high level. It

should be noted our choice of any external components and languages is motivated by the

open source nature of said components and languages.

A linear walkthrough of the system will provide a more accurate overall understanding

of individual components, as well as the manner in which these components relate to each

other.
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3.1 Scraping

The �rst challenge in extracting supplementary data is acquiring the data. The information

extraction components of the system assume possession of the document(s). This assump-

tion validates the need to provide aid in �nding supplementary data. The challenge of �nding

speci�c useful supplementary data is subject to bifurcation with each considered complica-

tion and is thus not trivial. With su�cient time, a well-crafted web scraping framework

which searches for supplementary data on popular scienti�c publishing web sites could be

designed and implemented. This is essentially not the focus of our work; instead, we chose

to make use of an open source web scraping and crawling tool called Scrapy (found at

www.scrapy.org).

Scrapy is a very well documented web crawling framework. Scrapy use is broken into

three distinguishable parts: an overarching environment (such as a shell) to run the web

session in, pre-de�ned scraping items, and the scraping `spider'. Scrapy is used as a proof

of concept for extracting PDF and Microsoft Excel document links from a given URL.

The user is prompted (see Sections 3.4 and 4.4) to give a URL upon which the system

constructs a �le called `urls.txt'. The construction of this �le is mostly for future expansion,

allowing for multiple URLs. Scrapy works conveniently in its own shell environment but

is run in a script to launch the Scrapy spider instance. This custom-built Scrapy spider

extracts all links with their titles into a JSON1 �le. At this point we have no further need

to use Scrapy; instead, we parse the JSON �le to extract all possibly interesting links (those

with `.pdf' in them, for example). Figure 3.1 shows a visual representation of this process.

Although there is room for improvement in this scraping module (with greater automa-

tion and multi-level scraping, for example), it is e�cient for simpler cases and serves as a

proof of concept. An issue encountered with this design revolves around the dynamic nature

of JavaScript and its use in resolving link addresses post-click. This means the links do not
1JSON (JavaScript Object Notation) �les are useful since they provide a notation that is both deserial-

izable and human readable (Figure4.1)
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appear statically within html link tags. To deal with this, the JavaScript associated with

said link must be executed in some JavaScript shell environment � this is a complexity to

be overcome in future work.

Once the scraping is complete, the user may navigate to the found documents or simply

download them. At this point the user will (theoretically) have the document containing

supplementary data. This document can be passed onto the system for analysis and extrac-

tion. The system will accept PDF and Microsoft Excel documents (with easy extension to

other formats).

Figure 3.1: An overview of the proof of concept scraping module. URLs are extracted by
the custom built Spider and written to a JSON �le. This JSON �le is parsed serarately.
The scraping script ties these components together.
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3.2 PDF information extraction

PDF information extraction is a major point of complexity in the endeavour of reusing

supplementary data. Simple table structures are considered in this development stage. We

propose a heuristic model to identifying table cell boundaries in a PDF document and an

OCR approach for extracting the text from the table cells. This approach may prove to

be computationally heavy, but for the sake of developing a possible universal method for

extracting tabular information from published PDFs, this technique must be explored.

Figure 3.2 outlines the table extraction module being designed and implemented. The

PDF splitter component is responsible for splitting a multipage PDF document into individ-

ual pages and also converting each of those pages into an image (as these images will be used

from here on). PyPDF (Section 2.7.1) is used to split the PDF document into its individual

pages and PythonMagick is used to convert each individual PDF page into a corresponding

image. Another particularly useful mechanism of PyPDF is used at this point: all the text

on the page being considered is stored in a simple text �le and is also given to Tesseract

OCR as its set of user-de�ned words. The use of this text �le will become apparent when

considering the fuzzy matching algorithm (Section 4.2.4). It is necessary to trim the excess

o� the images extracted as images can tend to be computationally heavy to process. A

simple edge trimming algorithm is implemented, resulting in a cropped version of the page.

An image has a potential wealth of knowledge associated with it. The trick is to de-

termine which of this knowledge is useful and which is not. Tabular data usully has fairly

obvious delimitation (i.e. either lines or white space). An analysis of pixel counts (both

horizontally and vertically) is chosen for determining row and column dimensions and coor-

dinates. Figure 3.3 shows a detailed example of column choice. The implementation of this

will follow in Section 4.2.2. This information is passed to a text extractor. The interesting

components will be detailed in later sections.
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Figure 3.2: An overview of the PDF table extraction module.
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Figure 3.3: A pixel count for each horizontal line in an arbitary PDF page. The lighter lines
indicate the pixel count. The dark and straight lines are choices for column delimiting.

The text extractor is responsible for extracting cells for OCR and performing OCR.

The design choice of using OCR when a digital copy of the document already exists, may

seem counter-intuitive. OCR accuracy is independant of image quality, therefore having a

digital copy of the image at hand allows quality issues to be void. Since we are aiming for a

maximum degree of automation, a number of tweaking algorithms are performed, namely:

1. Fixing split rows. To preserve information such as table headings as well as cells span-

ning multiple columns (considering a �exible layout for tables), each cell is determined

to be completed or continuing and dealt with accordingly.

2. Pre-processing individual cells. This involves running a border removal algorithm, as

well as, a number of possible OpenCV routines.

3. Dealing with single character/digit cells. Tesseract OCR does not handle these well.
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It does have an option for single character input, but fails for single digit input. A

check is done to determine the presence of a single character/digit in a cell. If this is

proven to be the case, a character is appended to the cell and Tesseract OCR is rerun.

The extracted user words should make Tesseract OCRmore accurate. The system is designed

to output a text-based table but has the potential to be inaccurate owing to the multipass

nature of Tesseract. When only looking at one or a small number of words, the power behind

using an adaptive classi�er is lost. To regain and actually improve accuracy, an approximate

match is sought for each word found through OCR (making use of all the words extracted

o� the page prior to converting it to an image).

Although there is scope and space for improving and increasing automation, constraints

of time and development complexity limit this. The table generated from the PDF page being

considered is output. The user is responsible for checking and adjusting cells and choosing

columns and rows. A BED �le can be generated from three chosen columns (speci�cally,

the name of the chromosome, the start coordinate, and the end coordinate) and passed onto

BEDTools in which fastaFromBed is used to extract FASTA sequences.

Owing to the nature of this `proof of concept' style work, a vital assumption is made

regarding the input page. The page being processed contains a table only (although some

text such as a title does not interfere with the algorithm to a large degree). Work by Liu et

al. on TableSeer (Liu et al., 2007) is capable of determining which block sections of a PDF

document are considered to be tables and can be integrated in future work.

Another common format in which supplementary data is published is that of Microsoft

Excel spreadsheets and extracting information from them is a less challenging task; we will

discuss the design of that module of our system below.
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3.3 Spreadsheet information extraction

The strain and manual e�ort required to access and reuse information contained within a

PDF document is considerable and does require developing automated means of doing so.

This fact does not prove to be as true for documents in spreadsheet formats. The reason for

this is the very nature of these documents is easy access and easy alteration, with a focus on

simplicity. PDFs provide a solid means and standard for viewing documents, not for storing

scienti�c data. Extracting data from spreadsheet style documents proves to be an easier

task. Many existing libraries exist to this end.

The choice of library is based on programming language and spreadsheet type speci�cs.

Owing to its popularity, working with Microsoft Excel spreadsheets is chosen. When it

comes to which library to use, remaining in the realm of a scripted style approach and an

open source language, has impact on this decision. For this reason, the xlrd library is chosen

for spreadsheet information extraction.

The xlrd library (with a GitHub repository found at github.com/python-excel/xlrd) is a

simple Microsoft Excel data reading library2 that does not require Microsoft or Excel on the

host machine. It is written in Python and represents all strings as Python Unicode Objects

(thus compatible with Microsoft Excel 97 and onwards). Its capabilities extend beyond what

is needed and become useful for retrieving metadata on the document (number of rows and

columns and sheet names, for example) (Simplistix, 2012).

A wrapper is implemented around xlrd for extracting data from spreadsheets. An ideal

output from this component should be identical to that from the PDF extraction component.

As mentioned previously, this task is done for completeness and for seeking a seemless

approach to data extraction in the hopes of reusability.

The goal of full automation is an ideal scenario and a good point to aim for. In reality,

however, full automation will not be easily achievable. User involvement via a user interface

is necessary and will now be discussed.
2xlwt is an accompanying writing and formatting library
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3.4 User interface and user involvement

There exist many means of constructing user interfaces. These range from custom built user

interfaces and command line style interfaces or shells, to web service oriented interfaces.

Constructing a web service to be deployed in a server environment (of the likes of an Apache

server) has the advantage of being able to run on UNIX and Windows platforms (with

consideration that all other packages used must have this same property). The ability to

make this resource public, makes it more accessible for researchers.

The disadvantages of limited customizability and security concerns are considerable. A

web service will adopt the environment of HTML and JavaScript to accomplish a suitable

look and feel and usefulness depends upon the capabilities of the designer and implementer.

We mention a disadvantage of choosing this option for a user interface is limited customiz-

ability. It must be made clear this disadvantage hinges more upon ability to develop this

environment from a developers perspective, rather than a limitation in the environment it-

self (considering the extensive capabilities of HTML and JavaScript). More research must

be done in this area but will be reserved for future work.

There exists a JavaScript library to aid in creating a good user interface: jQuery

(www.jquery.com) has become the de facto standard for designing web based user inter-

faces and will be used for developing our user interface. Another disadvantage of developing

a system for use as a web service is security. This is owing to its public facing nature.

Dealing with the issue of security will not be a large undertaking because of the simple

construction of this user interface and the nature of input data.

The user interface is structured in two parts, namely:

1. an initial `upload' and `scrape' page for uploading documents or a URL to scrape for

documents;

2. an output page consisting of the tabular data. The output page is found from analysing

the input document with the option to modify this found data, choosing relevant
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columns, and removing columns and rows.

An example of the �rst input form is shown in Figure 3.4 and an example of what output

analysis will look like is shown in Figure 3.5.

Figure 3.4: A simple input form example for the �rst section of the user input � simple but
su�cient. This should accept Microsoft Excel and PDF �les. The DPI �eld refers to dots
per inch which is a measure of the quality of the image recovered for OCR. The page �eld
determines which page of the PDF document should be used.

Since the central theme of this work is to improve reusability of scienti�c publications,

we will now propose a solution to keeping track of the parameters and state of the system.

In this way, repeating the entire process of information extraction after parameter tweaking

should be made unnecessary.
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Figure 3.5: A proposed example for the working output for the user interface. The top �gure
demonstrates the full row, full column, and single cell selection capabilities. The bottom
�gure demonstrates the use of the `Choose Sequence Name Column' (in green), `Choose
Sequence Start Column' (in yellow), and `Choose Sequence End Column' (in red) buttons.
These will be implemented using HTML and the JavaScript jQuery library.
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3.5 Repeatable approach

The process of information retrieval involves multiple steps. If fault was found in the output,

repeating the process should not involve repeating all steps. Keeping system-state and

parameter information will improve the reusability of the system.

As an example of this (and as mentioned in Section 2.3), sequence coordinates can be

either zero- or one- based. Depending upon what sort of work is being done with the

sequences in question, the o�set di�erence of a single base can be irrelevant. However, this

irrelevancy is not all-encompassing and cannot be assumed. Which circumstances would

yield zero-based or one-based coordinates is not clearly de�ned: prompting a user for this

information will su�ce for now.

Consider the following situation: suppose the coordinates extracted from a document are

zero-based; suppose also the genome being browsed and the tools used for browsing assume

input coordinates are one-based. This would need a simple tweak to the input coordinates

in order for the correct sequences to be found. This sort of slight tweak would most certainly

not require the entire job to be run again with di�erent input parameters. Instead, a modular

system (with pieces running as independently of each other as possible) provides scope for

implementing a shell like environment (perhaps in future work) and a scripted approach to

tying pieces together. A partial solution is implemented, providing means to store state and

parameter information. The reuse of this information is reserved for future work.
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Chapter 4

Implementation

The process of de-obfuscation and improving reusability of scienti�c publications consists

of three parts: scraping, information extraction, and user intervention. The information

extraction will be the most computationally heavy and intrinsically complex part of this,

consisting of an excel extraction module and a PDF extraction module. The user direction

is paramount in resolving the data into useful information and works side by side with a

tracking module (which will keep track of parameters and various pieces of information re-

lating to system state). The following is an outline of various novel or interesting approaches

used in implementing this system.

4.1 Scraper component

Scrapy provides an above standard documentation with walkthroughs on how to accomplish

scraping tasks. This framework is very powerful and more than necessary for scraping

links to certain types of documents. There are commonly three components to a Scrapy

web scraper: the environment in which Scrapy is hosted, the items to be scraped, and the

scraping spider itself.
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The framework can be utilized in numerous ways, the most common of these being in

its own python-like shell environment. This would not be useful for our purposes; instead,

running an encapsulating script making use of python's built in event driven network frame-

work (called twisted) is chosen. In order to make this work, a spider must be created and

items must be de�ned.

Scrapy items are used for de�ning the data to be scraped. This is done by de�ning an

`Item' class with any choice of associated �elds as class level variables. These items are then

used by the spider.

The spider is the real backbone of the web scraper. Along with necessities such as the

spider name and start URLs, this houses information regarding allowed domains and rules

associated with scraping. Spiders can be constructed to run recursively up to a certain depth

of link, but for our purposes we will only scrape the given URL. With this information in

hand, Scrapy does the job of retrieving information and storing it in an XPath like fashion

(XPath is an XML Path Language for addressing an XML document). Detail on this storing

mechanism is unimportant � su�ce to know Scrapy makes use of selectors for information

querying. For example,

hxs = HtmlXPathSelector(response)

links = hxs.select('//a')

will return all <a href...> tags from the scraped URL. From this point, all of these tags

are broken into their constituent parts and stored as an Item. A question arises at this point:

what happens to these items once the scraping is complete? Scrapy has no built-in method

for exporting these items. It does, however, usefully employ a JSON exporter (amongst

others). The �elds stored are the link, the description associated with the link, and the

link's title.
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Figure 4.1: A JSON output example. The links are either relative to the domain being
scraped (in this case biomedcentral.com) or static (such as the �Adobe Acrobat Reader�
link).

The next step is to recover certain useful links only. In our case this would be any

links to PDF documents, Microsoft Excel, or FASTA �les. Although Scrapy spiders can be

tailored and tweaked (using a variety of methods � most notably that of regular expressions)

so that selectors return only certain links, doing this apart from Scrapy proves to be much

simpler. We have chosen to parse the JSON �le and construct two dictionaries for output:

a dictionary containing all links and a dictionary containing useful links. These dictionaries

are constructed with many-to-one relationships. This ensures a simple link title such as

�Download �le� can be associated with numerous links (Figure 4.1). The limitations of this

scraping component are mentioned in Section 3.1.

Building a truly dynamic web scraper capable of resolving links in a JavaScript shell

and recursively following links is an ideal case and is not outside of the scope for future

development. Since this is an exercise in providing a means for improving reusability, we

will now detail the intricacies of information extraction once these scraped documents (or,

for that matter, any suitable document) are supplied to the system.
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4.2 PDF information extraction algorithms

As outlined in Section 3.2, the job of reliably and accurately extracting information from

PDF documents is no trivial task and can easily be considered enough to form an independent

piece of work. A considerably large and decidedly major part of de-obfuscating scienti�c

publications is found in the task of PDF tabular information extraction. Even this, with its

intrinsic complexities, does not cover all cases and is but a fragment of what is possible. In

the following sections, algorithms associated with the approach of using image analysis and

OCR are detailed. The pipeline of actions performed on a PDF document is shown in Figure

3.2. The process of determining cell dimensions is interesting and will be detailed. The data

structures related to OpenCV must be considered prior to detailing the algorithmic choices.

4.2.1 OpenCV and data structures

The primary data structures being worked with will inherently be determined by the OpenCV

library. This means extensive use of multidimensional arrays and NumPy. NumPy is a

Python extension for working with large, multidimensional arrays. NumPy has many useful

built-in methods allowing it to perform tasks such as array restructuring. Each image array

stores image information in multidimensional arrays � the outer array represnets rows; the

next depth represents each element of an individual row (i.e. columns); and the inner array

is a three element array representing RGB values (ranging from 0 - 255) or a single value

(of the same range) for grey images.

4.2.2 Determining cell dimensions

The �rst step in determining cell dimensions is making decisions regarding what data con-

tained in an image can serve to supply suitable information for splitting into rows (horizontal

segmentation) and columns (vertical segmentation). The traditional idea of a table would

be one with de�ned lines. A solution becomes clear when there are clearly de�ned dividing
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lines, i.e. using pre-de�ned line �nding algorithms (like those present in the OpenCV li-

braries). This has been explored by and is found to be e�ective when lines are present. The

persistence of this ideal case will not be all encompassing and basing algorithmic choices

upon it will not work. A reliably present visual characteristic of tables must be determined.

One such characteristic is that of space dividing column and row boundaries. Although

spacing may be inconsistent and although there do not exist any de�ned layout conditions,

tables involve some form of visual spacing by de�nition. We make use of the visual layout

of tables to gather information.

Useful information for determining the spacing between possible cells is that of a pixel

count. This works by counting dark pixels (using a grayscale image) along horizontal lines

from top to bottom and vertical lines from left to right. The contrast between a tabular

layout and a normal layout shows the usefulness of this information (Figure 4.2). Owing to

the separate nature of each line's calculation, counting pixels has the potential to be easily

parallelisable and will run in a concurrent fashion using Python's built in multiprocessing

module.

At this point we have a cropped image of a PDF page with vertical and horizontal pixel

count information. Using this information in a smart manner now becomes the challenge.

With practically in�nite possible variations of page and table layout, normalising this infor-

mation is a crucial step in circumventing many classes of strange layouts. For example, a

dark image or logo block or highlighting will result in some o�set in the pixel information.

The o�set may be over the entire pixel count (which is not di�cult to deal with) or may

be over only a section (which is more challenging to deal with). A common minimum pixel

count value is determined and all the pixel count values are normalised to this determined

minimum.
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(a) (b)

(c)

Figure 4.2: An example of counting horizontal and vertical pixels. The overlaid graph is the
pixel count. The lines are inserted based on this pixel count information. Figure a is the
horizontal pixel count: counting from left to right for each image y-coordinate. Figure b is
the vertical pixel count: counting from top to bottom for each image x-coordinate. Figure c
is an added example of what the pixel count looks like when considering non-tabular data.

The choice of using space to determine cell divisions means that existing clear table

division lines now turns from a possible aid to a problem. To circumvent this problem,

lines above a threshold length are removed. This removes all simple cases of dividing lines.

An image with only reasonably clear white space divisions and horizontal and vertical pixel

counts is what we have at this point. Determining cell boundaries can now occur.
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Algorithm 4.1 Cell division point �nding algorithm
determine pixel count length and calculate threshold

for each line in pixel count
if (line pixel count < threshold)

consider as a gap
else if (gap exists)

add gap to gap list
calculate total gap and average gap
determine minimum gap length

for gap in gaps
if gap exceeds minimum gap length

add gap to division points
else

if �rst or last gap
add special cases to division points
determine division points in percentages

draw division points on image
return division points in percentages

Algorithm 4.1 brie�y summarizes the cell division algorithm. The threshold is calculated

based on the image coordinates and a pixel ratio. The average gap multiplied by some

multiplier to calculate the minimum gap length � this is also a parameter which can be

changed. Tweaking these �elds will be the key to determining correct cell dimensions. The

division points are returned as relative percentages for each axis of the image (justi�ed by

the fact that the pre image analysis can take place on a much lower resolution version of

the image than OCR).

Once the cell dimensions are determined, the image is cropped cell by cell in order to

perform OCR. A number of complications arise:

• cell dimensions may be incorrect for some cells and/or for headings;

• Tesseract OCR does not work well with single characters and digits. Although there

is a command line �ag to allow for single characters, this does not fare well for single

digits.
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4.2.3 Fixing cells and helping Tesseract along

The following sections will outline techniques used to combat possible problems after the

cell division step.

4.2.3.1 Fixing rows

Cell dimension analysis can lead to certain circumstances in which post analysis cell �xing

must occur (Figure 4.3). The analysis is done row by row. Each row is passed to a �xing

algorithm. The deconstructed row is analysed in order to make sure text does not encroach

from one cell to another. To do this, each cell's rightmost edge is analysed. If this edge

contains dark pixels it is determined that this cell has cut text and should be concatenated

with the next cell. Analysis is continued up until the second last cell in the row. The

resulting combination of original and concatenated images is returned. This clearly will not

pick up on cells that have been cut in positions where there exists spacing (i.e. word or

character spaces); the purpose of �xing rows is to allow for Tesseract OCR to have complete

letters to perform OCR on.

Figure 4.3: An example of a heading post analysis � table headings are not uncommon
and, although they have little to do with the contained tabular data, do provide useful
information. Note the lines cutting letters apart.

The construction of the image arrays (see Section 4.2.1) and the need to concatenate

images, o�ers choice as to how images can be concatenated. To run through each row of each

image and concatenate in such a manner may prove computationally intense (see the left

side of Figure 4.4). Instead, using NumPy's powerful ability quickly to restructure arrays

and rotating each image by 90 degrees, means concatenation can then be a one step process,

merely involving extending the overall image array (see the right side of Figure 4.4).The

entire �xing process can e�ectively be repeated for each column. This process deals with
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text that extends beyond the determined cell boundaries. Text that is particularly short

(i.e. an individual character or letter) provides its own complications.

Figure 4.4: Outlining the two concatenation options available to us. The left side shows
concatenation per row. The right side shows a rotated cell with concatenation per cell.

4.2.3.2 Tesseract and single characters

Tesseract OCR has numerous command line options for text alignment and input speci�ca-

tion (Figure 4.5). Some of these have to do with the fact that Tesseract OCR does not have

built in page segmentation. Other options allow a user to specify what the input will look

like. Since it is not uncommon to �nd tabular data consisting of a single character or digit,

option 10 (�Treat the image as a single character�) seems like a good choice for attempting

to pick up single characters. During initial testing, it was found Tesseract OCR (with its

default training) was unable to recognise single characters unless this command line option

was set. What is more concerning is its complete inability to recognise single digits even in

this mode.
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Figure 4.5: Tesseract OCR's command line options. Option seven is convenient for our use.

A simple mechanism is needed to deal with these cases. The solution to this comes

in the form of placing an easily recognisable character alongside these single characters or

digits and discarding it once OCR is completed. For no other reason besides for its easily

identi�able features, the letter `T' is chosen. OCR is �rst attempted and if no result is

found, a single character or digit is assumed. The cell is analysed to make sure there is

space to add an additional character. An image of a `T' is loaded, scaled and added to the

cell image. The `T' image is smaller than the cell image, allowing NumPy's broadcasting

technique to be used. Broadcasting refers to NumPy's ability to match smaller arrays to

larger arrays by broadcasting the smaller array across the larger array so that they have

the same dimensions and adding them. This mechanism is a means of vectorizing, taking

place in C instead of Python and is usually computationally e�cient. The row-�xing occurs

before OCR takes place and the addition of an extra character to deal with single character

faults occurs after OCR (causing OCR to repeat). The overall table output from the OCR

step is kept using the same dimensions as is found from the cell dimensioning algorithm.

The next step is to clean and improve the text found after performing OCR.
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4.2.4 Fuzzy string matching

Traditional use of OCR is on scanned images with limitation on the image quality. Since

text in PDFs is vector based, the quality of the image extracted from the PDF has the

potential to be much greater than any scanned image can o�er. The power behind using

OCR is not fully realised nor needed. A suitable quality image must be chosen in order to

strike a balance between Tesseract OCR's ability and the computational cost of analysing

high resolution images. Accuracy testing for di�erent chosen image qualities will be done.

A minimum image quality of approximately 150 DPI is chosen. Regardless of the quality of

the image, it is useful to compare OCR output to some known present words.

As mentioned in Section 3.2, pyPdf can be used to extract all text from a page. Each

cell's text (determined by OCR) is be compared to these words using pythons built in di�ib

library. The di�ib module1 provides classes for comparisons of sequences of various for-

mats. The routines used from this library are get_closest_matches and SequenceMatcher.

get_closest_matches takes in a string to match along with a list of possible matches, and

returns an ordered list of best matches above some threshold match accuracy. Sequence-

Matcher is used to determine comparison ratios between two strings by �nding the best

contiguous match in a recursive fashion. Complications must be taken into account before

matching can occur:

• A cell can contain multiple words.

Solution: each individual word is matched and a matched sentence is built up from

these best matches.

• OCR can easily be confused between the letter `O' and the number zero, the letter `S'

and the numbers �ve and eight.

Solution: All occurances of possibly confused letters are replaced with their coun-

terpart(s) and a new match is found for each of these.

1Documentation found at docs.python.org/2/library/di�ib.html
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These cases result in many possible matches. The matches are the original input (if

no matches are suitable), a simple one word match, multiple letter replaced matches, and

multiple sentence matches (the original sentence also undergoes letter and number swapping

to circumvent confusion). These matches are found using get_closest_matches. Sequence-

Matcher is now used to determine the accuracy ratio of each individual match and the best

match is chosen. If the input consists purely of numerical values, the required threshold

accuracy is higher � numerical values are usually required to be of higher accuracy. The

new fuzzy-matched table is output as the �nal result.

Along the way there are many possible subtle tweaks to algorithm parameters and com-

mand line inputs. Owing to the fact that we are considering cases focused on bioinformatics

genome coordinates, speci�cations of what tables should look like do exist. For instance,

there should be a minimum of three columns: the sequence name column, the sequence start

coordinate, and the sequence end coordinate. These columns, the coordinate o�set (i.e. 0-

or 1-based notation), and the genome will be used to construct a query for sequences.

4.3 Keeping track

Individual elements of this system have been outlined and can generally work separately from

each other. It would be a waste of time and computational power to recompute much of

what has already been computed if a parameter is needed to be changed. The changing of a

parameter is just one example of what could change. We will keep a record of all parameters

along with information relating to intermediate states of the system. The following is an

outline of the parameters.

• The input �lename.

• The quality (in dots per inch ) used to convert the PDF page needing analysis along

with the page number within the PDF document.

• The multiplier for determining the threshold of the minimum pixel count for column
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and row `gap' calculations. This is called the pixel ratio.

• The multiplier for determining the presence of a gap. This multiplier aids in de�ning

the length of a gap and is called the minimum gap length multiplier.

• The multiplier for determining the normalised minimum point for the pixel count.

This is called the minimum pixel count threshold multiplier.

• The indices of the three necessary columns (as mentioned in Section 4.2.4).

Along with the parameters, certain �les relating to the system state will be kept.

• The original PDF document and the original image �le extracted from it.

• The pixel count information � both before and after normalisation. This means that

normalisation can be repeated with a di�erent minimum pixel count threshold multi-

plier.

• For both user use and debugging (see Figure 4.2 for examples):

� The image with the pixel count information plotted on this.

� The image with determined cell boundaries indicated.

• The extracted table before and after fuzzy matching.

4.4 User interface

The supplementary gathering system is designed to improve reusability of scienti�c publica-

tions. As it stands, the scraping, Microsoft Excel extraction, and PDF extraction modules

can stand alone (as can their constituent parts) to form an explorative backbone for a proof

of concept information extraction system. To move away from this code-oriented environ-

ment into a workable piece of software, a user interface is required. This user interface

will be responsible for gathering user de�ned parameters and should be the means through
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which tweaks in this entire data extraction process can occur. There exist many possible

aspects to this. As an example we will implement a mechanism for editing table structure

and data (as exempli�ed in Figure 3.5). The main mechanism behind this will be the jQuery

JavaScript library. The jQuery library makes use of the document object model which is an

API de�ning the logical structure of valid HTML and XML documents. jQuery is designed

as an abstraction on top of lower level details and and is written in JavaScript. It simpli�es

the syntax for traversing the document object model in order to select elements, change the

content and structure dynamically, handle events, develop socket based applications, and

much more. An advantage of using JavaScript is that it runs client side and does not require

HTML requests to restructure the working web page.

The HTML page will be dynamically built by a Python script making use of Python's

Common Gateway Interface (CGI) scripts. CGI scripts are a means of running python code

invoked by an HTML request and run on the server side. They work in much the same

way as PHP scripts. The choice of using CGI over PHP is the fact that Python is used

throughout the project and will link easily with the CGI scripts. The Apache server setup

allows for these (provided the settings are in order). HTML tags allow both `class' and `id'

�elds (with no decisive limitation on the number of classes or ids associated with a tag).

Tailoring these as markers for column, row, and cell selection proves useful � jQuery has

access to these within the document object model and can select and alter tags.

jQuery-style functions are written to highlight selected cells and keep track of the asso-

ciated ids and classes. Once the table has been tailored and columns have been selected,

this enriched table information can be passed on and turned into a BED �le for submission.

4.5 How testing will occur

In order to do testing, a su�cient dataset is necessary. This will require some searching

for bioinformatics related supplementary data (since it is this area at which the system is

aimed). Any PDF with suitable table structures will also be considered for testing. Various
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accuracy tests will be undergone. Accuracy can be broken into two parts: OCR accuracy

and cell division accuracy. Using OCR to extract cell information can be replaced in the

future (by other means of direct coordinate to text element PDF extraction). Tables will

be analysed with this system and also manually. The comparison of manual and automatic

analysis will yield suitable accuracy results. The fuzzy matching algorithm will also be

tested with a variety of inputs.
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Chapter 5

Findings and Discussion

Testing was carried out on parts of the system that would yield results. For instance, the

fuzzy matching algorithm is tested to gauge the contributed improvement of using it. To

follow is a series of results and discussion associated with several parts of the system.

5.1 Scrapy

The implementation of the scraping component of this system is not at a level where it

can resolve dynamic links using JavaScript. It can, however, extract all static links (i.e.

links found directly in the HTML source code of a web page) and determine which of these

correspond to useful documents. The scraping component is not the bulk of the system being

implemented but does serve as a proof of concept and opens doors to future implementation

and improvement. The current platform would be considerably improved with the addition

of the ability to resolve links dynamically.
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5.2 OCR accuracy

Owing to the fact that OCR has the potential to be inaccurate, we measure accuracy to

determine the viability of using OCR as a means for extracting information. As a proof of

concept we perform tests on two sets of data � a constructed table with an array of di�erent

styles of input values (determined by analysing a range of supplements) and a real world

bioinformatics example. Figure 5.1 shows an example of constructed data while Figure 5.2

shows an example of real world data.

y

Figure 5.1: An example of constructed data

Figure 5.2: An example extract of real world style bioinformatics supplementary table data.
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An expected output is constructed by manually copying and correcting the table data.

The PDF is run through the table extraction pipeline and resulting tables are output (both

with and without fuzzy matching). These tables are then compared cell by cell to the

expected output table. This comparison is two fold: each cell is checked for an exact match

against the expected output (dashed line) and also for similarity against the expected output

(solid line). The varying input parameter is the image extraction quality (so as to test the

most e�ective range of OCR). Figures 5.4 and 5.5 show the OCR accuracy versus input

image quality for constructed data and real world data respectively. The error rate in

higher quality regions (from 160 DPI onwards) of the constructed data and real world data

is 6.05% and 0.2% respectively. Tesseract OCR word error rate is found to be between

2.63% and 4.95% with an average of 4.12%. Our achieved error rate is not very di�erent

from Tesseract OCR's known error rates. Error rates can be minimized by using maximum

quality images � the real world data OCR maximum accuracy is 100% while the constructed

data OCR maximum accuracy is 96.77%.

The inconsistency in the trend of accuracy with lower quality images is expected as OCR

is dependent on the structure of the text represented in the image. At di�erent qualities

certain nuances of text construction change (Figure 5.3).

(a) (b)

Figure 5.3: Figure a highlights the di�erence in image quality as the DPI is raised. The
di�erence in text construction is most notable at lower quality and is most noticeable when
considering the `8'. Figure b shows the di�erence in text construction at 110 DPI and 250
DPI respectively: at 110 DPI the two eights can easily be confused with `BB'.
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Figure 5.4: Accuracy versus Quality - constructed data.

Figure 5.5: Accuracy versus Quality - Real world data .
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There is a consistent trend toward more accurate results with higher quality images,

although the shape of the graphs in Figures 5.4 and 5.5 is not smooth. The erratic changes

in OCR accuracy diminish with higher quality images as does the time taken to perform

OCR. Figure 5.7 shows the OCR timing results for constructed data. OCR analysis on

images below 97 DPI takes considerably longer than analysis of images over 97 DPI. Figure

5.7 shows the OCR timing results for real world data. In contrast with the previous results,

this shows an initial increase in time with higher quality images. The contrast between these

results shows the dependence of the OCR stage on many factors (such as the number of cells,

the constituent text of these cells, and the image quality). There can be no consistent time

related to the OCR stage owing to the many possible table construction variations. The

real world data consists of many more cells than the constructed data; the OCR stage takes

on average 44.67 seconds to complete.

The time taken to perform OCR becomes linearly consistent (considering a rolling av-

erage over multiple qualities) and highly erratic. This erratic nature has been observed

throughout implementation and testing. A possible cause of this may reside within Tesser-

act OCR. This behaviour is because of the inherent di�culty in processing di�erent quality

images (Figure 5.3) but would cease as the image quality is raised to a point where image

quality and text shape and construction have little or no relationship. Another cause of

this may be involved in the large array data structures used in image processing. Certain

quality images may result in data structure sizes which are e�ciently stored and passed

around in memory, while other quality images may result in data structure sizes which re-

quire more instructions to handle. These are merely assumptions and future testing would

involve determining the instruction counts involved in this step at di�erent image qualities.
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Figure 5.6: Overall table OCR analysis time versus quality for constructed data. This
corresponds with the data used in Figure 5.4.

Figure 5.7: Overall table OCR analysis time versus quality for real world data. This corre-
sponds with the data used in Figure 5.5.

68



5.3 Fuzzy matching improvement

The contribution of the fuzzy matching algorithm is exempli�ed in Figures 5.4 and 5.5.

The di�erence in accuracy with and without fuzzy matching is tested. At �rst glance these

results look similar to those of the OCR accuracy testing. This is, however, not the case.

There may be possible confusion surrounding the di�erence when fuzzy matching takes place

in these two sets of tests. When testing OCR accuracy, only the SequenceMatcher is used

to determine resultant accuracy levels. In contrast to the OCR accuracy testing, this fuzzy

match improvement testing is an actual test of the fuzzy matching algorithm (outlined in

Section 4.2.4). This is done by constructing two output tables: both with and without fuzzy

matching. The accuracy of these tables is determined (Figure 5.8 and Figure 5.9).

Figure 5.8: Accuracy versus Quality - with and without fuzzy matching (real world data).
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Figure 5.9: Accuracy versus (high) quality - with and without fuzzy matching (real world
data).

There is consistent improvement in accuracy and reliability a�orded by the fuzzy match-

ing algorithm at all di�erent input quality images. This testing was done on fairly consis-

tently structured tables (such as those shown in Figure 4.2). The result of perfect accuracy

at higher resolutions may be attributed to the simple structure of this table the text con-

tained in the cells. Figure shows that image quality is not the only contributing factor to

accuracy � Tesseract OCR is not perfect (and performs better with more textual input data

because of the multipass nature of its OCR algorithm). With more complex table structures

to consider, testing the cell division e�ectiveness must now occur.
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5.4 Cell division e�ectiveness

The main portion of work being done in determining cell division points is that of determin-

ing vertical and horizontal pixel counts. The time involved in doing so, is shown in Figures

5.10 and 5.11. As with the OCR timings, the erratic nature of these timing results may

also be attributed to the problem of memory allocation of the large arrays used in image

processing. There is a linear relationship between the time taken and the image quality. The

real world data (Figure 5.11) is seemingly more erratic than the constructed data (Figure

5.10). The real world data has more entries and thus results in a larger image (introducing

complexity and causing the time taken to increase).

Figure 5.10: Horizontal and Vertical pixel count timings � constructed data.

71



Figure 5.11: Horizontal and Vertical pixel count timings � real world data.

Determining column dimensions is a more complex task than determining row dimensions

owing to the fact that cell length tends to be inconsistent while line division remains fairly

consistent within a table. The accuracy of the cell division algorithm is exempli�ed in Figure

5.12. The centre of the gradient line shows the expected number of lines and fades outwards

to represent precision loss. The remaining solid lines represent the division count for multiple

sequential pages of a PDF document (constituents of the same large table). Use of the row

�xing algorithm (detailed in Section 4.2.3) results in greater leeway in the precision of cell

division. In this example, all the considered pages' division counts are accurate at very low

pixel ratios (generally from 3.2% and downward). We have chosen to test the algorithm

accuracy on simple tables where no considerable noise can interfere with pixel counts (as

apposed to the table analysed in Figure 5.13 which has considerable noise in the form of a

dark box above the table).
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Another notable feature of these graphs is the common trend of a region with very

high division counts. Figure 5.14 aids in explaining the presence of high division counts

at particular pixel ratios. The cell division algorithm relies on the pixel ratio to determine

gaps between columns and rows. The staggered nature of the pixel count graph results in

false gaps and thus false divisions. Take note of the horizontal lines indicating the pixel

threshold. When this is above the overlaid graph a gap is considered to be found (provided

the gap persists for a designated length). Future work will involve �nding a solution to this

problem by smoothing the pixel count graph so that the staggering is resolved.

Figure 5.12: Pixel threshold ratio versus division counts for tables without noise. The solid
lines represent the column division count found by our algorithm. The fuzzy line centers
over the required output, with diminishing accuracy and e�ectiveness as it fades.
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Figure 5.13: Pixel threshold ratio versus division counts for tables with a noise.

Figure 5.14: A vertical pixel count (like that as shown in Figure 4.2) scaled and overlaid on
the pixel ratio. The horizontal lines exemplify how di�erent pixel ratios can cause di�erent
algorithmic nuances to come into play.
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5.5 User interface

The user interface is designed to accept an input document, a page number, and DPI

(Figure 3.4) and output the matched table and an image with pixel count and line division

information overlaid (Figure 3.5). The functionality of the user interface is lacking. Although

a user is able to edit and modify cells and the table structure, using JavaScript and HTML

tables proves constricting. Building a custom user interface will allow for improved �exibility

and functionality. The current user interface simply interacts with the data extracted from

the input supplementary documents and can does not change this data.

5.6 Repeatability

Keeping track of the parameters and states involved in processing a PDF is a lightweight

operation. Using a dictionary data structure is su�cient to keep track of parameters. Re-

structuring the system to allow repetition of the same process with various parameter tweaks

will be easily accomplishable in future work. As it stands presently, all parameters are kept

track of and serialised to a �le called parameter_dictionary and the state of the system is

kept track of by saving pixel count information and images at various stages of the analysis

(Figure 4.2). Although far from the standards of Mesirov (2010), the tracking component

serves its purpose as a proof of concept and creates a platform for further work.
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Chapter 6

Conclusions

6.1 Summary

The problem, as stated in Chapter 1, this research intended to solve, was the lack of an

autonomous way to extract and reuse bioinformatics supplementary data (with extension to

any supplementary data) in tabular form. Information extraction systems do exist but are

either tailored toward a di�erent goal or are not open source.

A variety of document formats were considered and (owing to its persistent and widespread

use) PDF documents were chosen as a focal point. The chosen approach was to convert PDF

pages to images and perform image analysis and OCR on these images.

The image analysis consisted of determining the table dimensions using vertical and

horizontal pixel counts and thus determining `gap' regions. The algorithm proved to handle

tables of low complexity and low noise failed with tables of higher complexity or with

considerable noise. Exploring the table dimension �nding algorithm, yielded insight into

how to improve said algorithm. Re�nements and improvements to this algorithm will vastly

improve its e�ectiveness. Determining cell dimensions can be done in a heuristic fashion

provided the tabular data is of a consistent nature. The row �xing algorithm is designed to
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allow more leeway in incorrect cell dimensioning. Once table dimensions are found, Tesseract

OCR is used to extract cell contents.

It is found that the Tesseract OCR engine is not perfect and especially hindered by the

short length of text present in individual cells. Countering this weakness by using high

quality images and approximate string matching against a known set of words, consistently

improved accuracy. Performing OCR on a large table is slow, although copying from PDFs

and �xing the table structure can prove to be even more time consuming. Using OCR for

extracting information from PDFs is not viable in terms of accuracy (considering the actual

textual data is available to us) and e�ciency.

Supplementary data is not published in a completely consistent and reusable manner.

Extracting information from supplementary data published as PDF documents is a challenge

as this format is designed for portability and not reusability.

Finding static supplementary data links on a web page was done using Scrapy. Extending

this to scrape scienti�c publishing web sites in search of supplementary data corresponding to

a scienti�c publication would be possible using Scrapy or some other web scraping platform

yet is reserved for future work.

A simple user interface was developed to allow users to interact with the extracted data.

With considerably more work a better user interface can be designed. The purpose of the

user interface should be to allow extracted table editing and parameter tweaking. A tracking

component stores these parameters, as well as pixel count and image information, yet must

be integrated into the user interface.

This project set out to explore a means to provide a means of making bioinformatics

supplementary data more reusable. Although the techniques explored may be lacking, much

was explored regarding the viability of said techniques and further headway can now be

made in this venture.
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6.2 Future work

OCR is a slow and imperfect technology. As mentioned, making use of other techniques to

resolve coordinates to string elements in PDFs may prove faster and more accurate. This

would, however, require a streamlined and very accurate means of dividing a table correctly.

The dimension �nding algorithm needs improvement. A simple pixel count smoothing could

yield much higher accuracy. Implementing expected gap length analysis by looking at the

pixel count data, may also improve accuracy.

Text elements are stored by coordinates in PDF documents. Resolving accurate cell

dimensions to text elements may be an alternative means of extracting cell information.

If OCR is still chosen as the preferred method of extracting cell information, this can be

done on an entire table/page simultaneously to improve OCR accuracy. Tesseract OCR is

thread safe and can therefore be run on multiple threads, which should dramatically reduce

the time taken to perform OCR on all cells.

The PDF table extraction assumes the entire input page is a table. Making use of

work by Liu et al. to identify tables within a page, will allow us to move away from this

assumption.

Support vector machines (or other arti�cial intelligence techniques) may be used to class

sections of PDFs or images as tables.

An improved user interface and a linked tracking component will also be reserved for

future work.

Crowdsourcing can be used as contribution toward a repository of de-obfuscated scienti�c

publications. If somebody has gone to the e�ort to prepare either manually supplementary

data for reuse, make use of a system like ours to recover supplementary data, or contact

the author(s) for the original data, there should be a means for storing and making this

available for others to use. There exist repositories aiming to improve reusability, but none

are aimed at recovering already published data.
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